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BAYES LEAST SQUARES LINEAR REGRESSION IS
ASYMPTOTICALLY FULL BAYES:

ESTIMATION OF SPECTRAL DENSITIES

f
\ 1. INTRODUCTION / / | |

Bayes least squares linear (BLSL) estimators were introduced

e

TN
by Whittle (1957, 1958) and described explicitly and further devel-
——
oped by Hartigan(}l969). The method was applied to estimation of
coefficients of orthogonal expansions of regression functions in

inoﬂ\tl’ \ng—ko +h|.’ ;+ "3 hof?}'
4Brunk,1980) . 'In the present paper -we—ebserve that when many

Cen be 5"("’-‘“*’
observations are available we can expect the BLSL methodﬁpo yield
substantially the same results as a full Bayesian treatment; and

(s ,H\,,sfrn.h)v
9\—we~tiiuitrate'the methodhin the context of estimation of spectral
densities. In that context, the estimators suggested will appear
rather ordinary. But they are not completely ad hoc: each comes
with an interpretatici. And, when large samples are available,
the posterior distribution of the estimator at a fixed frequency

is (approximately) normal, with easily calculated standard deviation.

2. ORTHOGONAL EXPANSIONS AND THE BLSL METHOD \
In order to be more explicit, we recall the description of the
estimators given in (Brunk, 1980). Since the size of the data set
is relevant here, we allow the number of observations to appear in
the notation. Thus for each integer n we have a set
{xno’ X gseees xnn} of values of an "explanatory variable" in a

space X of possible values. The regression function Rn is
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defined on X and is assumed to have a finite expansion in terms of

specified functions L Rno and “nr’ r=0,1,..., n}:

a .
Rn(x) - Rno(x) + rno(x) Zr-o Bnr 4>nr(x), xeX. : (2.1)

The observations or responses (Yno’ Yn P Ynn) are assumed

independent, 'and Yn is assumed to have mean

3

E(Y

MER NI (2.2)

nj

and variance

Var(Y ) =1/« j=0,1,...,n, (2.3)
n n

3 nj °’

where 7, ...,"™ are known. We shall assume also that A

no nn n
is known, though in practice An may be .estimated from the data.

(One can state less restrictive assumptions that suffice. In

vhat follows, as elsewhere, a tilde underline indicates a random
entity, and " :=" 1is used between two expressions when the left
is defined by the right. These assumptions are that the linear
):

expectation of Yn be Rn(

j *n3

LECY 8, = 8) =B (x), 3=0,1,...,n,

oum ' (]
vwhere En : (eno s sen y .B.nn) ; and the linear covariance matrix

T ' =
of an : (Yno » see sy Ynn) given En 8, have entries

E([Yni - Rn(xni)][Ynj - Rn(xnj)]lgn = Bn) = 61_1 /An"nj ’

i.J = 0.1. e« e ’n;
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here 611 is the Kronecker delta: 611 =1 1if { =3, 613 =0
if 143.)

The functions wnr , r=0,1,...,n} are assumed selected

80 as to be orthonormal with respect to the design of the'experiment:

n

) (xg) oG ) 4 x ) =6 (2.4)

2
1=0 “njrno ns ' nj 8

The function Rno is thought of as a prior mean, so that one sets
E(gnr) = 0 » r = 0’ 1’ see 9 n . (205)

It is argued in (Brunk, 1980) that since each coefficient Bnt has
an interpretation independent of an for s $ r, it may often be

reasonable to assign 8 L - (8

Bns * .B.n:l.’ caey Enn)' a joint prior
distribution according to which the components Bao® *+* 2 By, are

independent; and we set

T ° 1/Var(§nr) »y T=0,1,...,0n. (2.6)

Set

n
U, " zj-o 'njrno(xnj) ’nr(xnj)umj - Rno(xnj)]
2.7
n
= EJ.O °nr.1wn;| y r=0,1,...,n,
vhere

cnrj 1. /'nj tno(xnj) ’nr(xnj) (2.8)

and

o f'.

...............................

- -" \:. " .‘1 .'n. o
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W, = /¢ [Ynj - Rno (xrj)] » X, §j=0,...,n. (2.9)

:_’i ".,

e That is, the random vector

5t : '
:\‘ . Un o= (Uno » Unr 9 e Unn)

o ¢ is obtained by applying the orthogonal transformation Cu to the

P3¢ vector W = := (wno » oo ,Wm)' » where

arg * r=0,1,...,2, 3j=0,1,...,n .

‘-’94 It follows from (2.4) that

~ E(U |8, =8) =8 (2.10)
R

fCa Y and that

ne [cov(U . .um)lgn =8 J=8_/2 . (2.11)

e Then the linear expectation of en given Uno s ses s Unn is given
by

~

/ = =
Bnr xnunr/(xn"-rnr) y r=0,1,...,n (2.12)

and the linear variances and covariances are given by

s -
3 E(gnr - Enr)z - 1/(An+1nr) . r=0,1,...,n , (2.13)

. E(eux' - Enr)(gns-ens) =0 for rts. (2.14)

"N For fixed x, the linear expectation of Rn(x) is

[ Sl
.

-~ . ... .
o \‘A\n'\s WO N OLC A AN

",
]
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el R(x) =R _(x) +r (x) ] Bar o () (2.15)
N r=0
A and its linear variance is
f A n |

Yy - 2y = 2 2

3% E([R (x) = R (0)]%) = ¢ 2(x) ):r-o 02/ (A +1 ) . (2.16)
LN
% Note that the method does not, in general, provide posterior

2
AN covariances.

303

N It will be useful to note that when Rno = 0 and ‘tnj =0
_"-' for §j=0,1,...,n, the formula for in(x) provides the ordinary
t} least squares regression of Y on x with weights L j°

5

j=0,1,...,0. Indeed, when k 1is fixed, k (= n , the
‘_: orthogonality properties of the functions {’nr tr=0,1, ... ,n}
A & . lead to E:-o a - ¢m_ as ordinary least squares estimator of Rn R
vhere

3"

i R n
;, a. :-Z 'nj ¢nr(xm1)ynj’ r=0,1,...,k.

- i=0

¥
:‘3 Note that a." Unr if Rno = (0 and & " Bnr if also
E' ‘l’nr-o, t-O, l’cnngkc

& Of course, the BLSL estimators may be considered from a con-
N ventional point of view. That is, one may choose, as is customary
XN
‘a vhen estimating a regression function R, , some family of functions
1-'
‘ considered adequate for representing it. One may then orthogonalize
s.‘ these functions with respect to the design, to obtain functions

'.;: {‘nr’ r=0, 1,...,n}; and then specify a function Rno and
L

Ko "precisions" {an' r=0, 1,2,...,n}, thus finally obtaining
()

K

t_"';

’,
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:i'ﬁ: an estimator of the regression function Rn . But such an estimator
3’ 1s not completely ad hoc; it comes with an interpretation. Ome

3:4 realizes that one is considering the same estimator that another

.:':_E; investigator would use who was applying the Bayes least squares

25 linear method, specifying Rno as a prior mean, and the 1
A\ _‘ {an » r=0,1,..., n} as precisions of the coefficients in the
:": expansion of R . And one may like to bear that in mind when

S specifying R, and the precisions.

', In principle, an investigator who is well acquainted with the
E. functions {¢nr} to be used, and who also has a clear and definite
by

opinion as to the probable shape of the regression function to be

estimated, can specify, more or less uniquely, a prior mean and prior

SN

"53 precisions. But in practice, there may be a rather wide variety of
5 specifications that all seem reasonable.. One may then examine a

’:"_~ number of estimates arising from a range of "reasonable" priors.

23 As to the specification of the prior mean, Rno » 4 heuristic argu-

“ ment is given in (Brunk, 1981) that it is often reasonable to fit

‘ the data--roughly--by a member of a family of smooth functions

l ;j depending on only one or two parameters. That leaves still the

precisions, an’ r=0, 1, ... ,0. Two suggestions come from think-

ing of them as reciprocals of prior variances of the parameters |

A-:l-$ q

= B_, r=0,1,2, ...,n. |
.:" ¥ar * y L9 & ’
o
- (1) If the functions ¢nr' oscillate more and more rapidly
’ with increasing r , one can express an opinion that the estimate
; ~. R 1is "smooth" by specifying large values of T,y ¥hen r 1is large.
(11) The precisions should be specified independently of the
ks data.
=
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2 3. APPROXIMATE NORMALITY

ot

d Now let us briefly imagine that the random variables

E':. U o2 eems unn were observed (rather than Yno » oo s Ynn) , that they

}': were independent according to their joint distribution given Bn ,

1 -

and that

'y

R Uw__lgsn -8, ~ NGB, 1/11_‘) . (3.1)
;

Suppose also that Bn is given a joint prior distribution according

i3 to which its components Bno s vee s Bnn are independent, and

\ - -

-

2 Enr~n(o’ lltnr), r=0,1,...,n. (3.2)
:s Then these components are also independent and normally distributed

¥

X according to their posterior distribution, with

51

@ z(gm_luno = seees U mu ) mAu SO T ), (3.3)
'-‘ 3

' (cf. (2.12) ) and

A
5 Va:(gnrluno-uno s veey unn-um) =UQ +T ),

' (3.4)
; t-o,l,...,n

o (ef (2.13), (2.14) ).
3 We are interested particularly in contexts in which one ex-
‘\2 presses an opinion as to the "smoothness” of R by assigning

large precisions tnr to the coefficients of rapidly varying

e
., functions ’nr in the expansion of Rn . Then, typically, there

X

is a positive integer m such that the posterior mean and variance

.............

., -' e et 4...‘-. ;.. - ‘_:.'_ ..’~...~. KRR x‘ \'.‘q 'n;-\.-.\
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of E - are so near zero for r ) m that corresponding terms in
the expansion can be neglected; and this is so also for the posterior
linear expectation and for E(énr - énr)z in the BLSL method.

When the observationms Yno s sae s Ynn are not jointly normal,
but n 1is large, we shall argue that often Uno s eve Unn will
have approximately a joint normal distribution (cf. Theorem 4.1,
to follow). The data Uno » see s Unn are fully equivalent to the
original data Yno s see s Ynn ¢ each may be obtained from the other

by an orthogonal linear transformation. And for some positive

integer m, U may safely be ignored, so that if

n,ml’ *°° Uan
gno » eso s Enn are given the multinormal prior distribution des-
cribed above, then according to their joint posterior distribution
they are (approximately) jointly normally distributed with posterior
means given by (2.12) and (3.3) and posterior variances by (2.13) and
(3.4). A theorem (Theorem 4.1) that suggests this approximation is

given in Section 4, and its proof in the appendix.

4. ASYMPTOTIC NORMALITY

3 . V
We consider triangular arrays ¥ : 0o ? vni s voe s Vn,kn ,

n=1, 2,..., where kn-ra as n -+ « , and where E(an)-o,

Var (Yn 5

is asymptotically normal, given Bn - Bn s When

)=1, §i=0,1,..., kn . We shall argue that this array

v (U - z(unr)J/[Var(unrn” s T =01,k (4.1)

provided that kn does not grow too fast. We use Mallows's (1972)

definition of asymptotic normality: the array 7  1is jointly

- o .
. LA, . -, -
- PR S PSR . e, et e .
. - -t . LG Rl TS A SR T T
. . . w0 e e e N et e e T e e L. e e
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asymptotically normal (j.a.n.) if for every array, ., of reals

ha o 2
80 Spg e ’anikn’ an=0,1,..., such that Zr-O a2=1, the
n
random variable Z ar vnr converges in distribution to the

standard normal distribution. (Mallows (1972) observes that this
implies that for each 4, (V‘no » sees V nd) converges in distri-

bution to the standard d-dimensional normal distribution.)

Theorem 4.1. Let there be a positive number M such that

% o

- 3( =
(An "nj) Ynj unjl ( =M, (4.2)
where i
unj = E(Ynj) - Rn (xnj) 9 j = 0’1’ se0 o n, n.l’zg see o (4.3)
And suppose that
k
max{/7 Ir o= )IZ |¢ (x )| §j=0,1, .c.,n}+0
(4.4)
as n>o©,
Then the array ¥ 1is j.a.n.
The proof, given in the appendix, consists of showingkin a
straightforward way that the characteristic function of 2 anrvnr

r=0
evaluated at a real number ¢, converges to exp(-t2/2) as

n + o, This theorem presents an instance of a phenomenon studied
by Mallows (1969). mte that the random variables Unr are obtained
via an orthogonal transformation from the random variables wn}l ; and
that while these are independent, they need not be normally distri-

buted. Although the inverse orthogonal transformation would recover

the original non-normal random variables, the random variables Unr

are everthel’ 38 j.a.n. Mallows (1969) proves a theorem with a
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»fi somevhat stronger conclusion, described in terms of the integrated
e squared difference between the standard normal distribution function
’:§ and the distribution function it approximates. As stated, Mallows's
.

“ .
‘?i theorem requires independent, identically distributed random vari-
i

\ .
N ables. While the method of proof appears to allow a relaxation of
;i( that requirement, it does seem to require that the distributions not
nl

I‘

2: be too nearly of lattice type.)
n 5. BLSL ESTIMATION OF SPECTRAL DENSITIES
,ﬁ We consider the problem of estimating the spectral density of

.
1%
: a stationary, purely nondeterministic time series
'o
Igg
@K

' X = a_ €

2 t zs_o s t-s

7

o

) (not necessarily Gaussian), where the random variables Et,
' .

53 t=...,-1,0,1,... are independent with zero means and common

2 variance. The coefficients 8, 8 = 0,1, ..., are unknown, but we

assume that J° la,|¢ @  and that
. t=0
\? )
sup E[ € ] =3 0 as ¢ =) =

;‘,‘ e -t e | >el
f— (cf. Anderson (1971), page 482). The spectral demsity, to be

N

) estimated, is

)

Ty

1 -
L2, f(w) =73 r(t)exp(2mivt) , =1/2 (= w (= 1/2,

. t- -
1%

- where

,'l';
K () := E(XX_..)
I
N

-

o
b
Ny

”
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f-:‘} is the covariance function. We follow Wahba (1980) in formulating
;\". the problem as an ordinary regression problem, with values of the
N
::. log periodogram (cepstrum) as data. Let xl, XZ’ cees x2n be
_:" observed. We have '
]
2n

I :=(1/20) | [ Xexp(2miut) |2, -1/2(=w(=1/2 ,
o i=1

"o

_!‘:

- = ( = -

- Inj 1.3/ (=1 j/2n))

= £(j/2n)T , ,

N ad

Ay
:\,:4 where

MR

) Tnj sm Inj/f(j/Zn) , j=0,1,2, ..., n.
o
',:'ji
4
:'{:. Asymptotically, as n + =, the random variables {'rnj » J=0,1,.. .,al}
win ’

o are independent, with T =~ and T distributed as x2(1) and
-2 T, ~ x2(2) for j =1,2,...,0-1 (Anderson, 1971, pp. 484~485).
n?'.:l
\.; We set
XN

X Ynj := log Inj+cj’ j=0,1,...4n,
I"..

A
:::: : where Co-cn = (In 2 + v), C._I = Y, j=1,2,..., n=1, and
',:"l: where Yy 1s the Euler-Mascheroni comstant, approximately 0.57721.

- Then the random variables {Ynj’ j=0,1, ... ,n} are asymptotically
N independent, with {Ynj’ §=1,2,...,0-1} asumptotically ideatically
N distributed.

)

d We set
":}.:
__i. Rn(x) := log £(x/2) for O(=x (=1,
.
== . According to the asymptotic distribution,

!‘.).

e

-:'i

-
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According to the asymptotic distribution,

E(Y,,) = R (3/n) = R (x.,)

3

where x , := j/n for j=0,1, 2, ..., n, while

nj

Var(y_,) = "2/6, §=1,2, ..., n-1,

3

Var(Y ,) = 72/2 for § =0, n.

We shall conduct the analysis and carry out the computations as if
Var(Y td) = 72/3 for j = 0, n, since in any case the influence of
these two terms is negligible for large n. 1In the notatiom of

Section 2, then, we take

n, = LI 1/2, n, =1 fox.' j=1,2,...,0-1,

nj ° nj
and

An :- 6/"2 E] n - 1’2’ LK IR J L]
The functions ¢ are given by

ur

¢n°(x) =1/ /n ,
¢nr(x) t= (2/n);’ cos "rx, r=1,2,...,n, x € [0,1].

The function Tro used is identically 1.

It is most convenient to take as Ro a linear combination of
the functions wnr : r=0,1,...,0}) . As we noted earlier, a
heuristic argument is given in (Brunk, 1981, page 117) that it is

reasonable for the investigator to select as prior mean Ro a

regression function that is consistent with both the data and his

(5.1




opinion as to its shape. In particular, the investigator may simply

use ordinary least squares with weights Trno, cen y "nn to choose

coefficients a s 83900y a for k=1 or 2 or 3 in fitting the
k

function ) a ¢  to the data. This would yield
r=0

k
R (x) = Zr.o a ¢ (x)
where

n
a_ = Zj-o LIVUIC SN0 ) SP

And then (cf. the end of Section 2) if Tg= Ty = =T = 0,

we have

- n .
- ]
Rn(x) zr-O Bnr ¢n r(x) , where

~

°m ¢ =
o xnunr/(xn*'tnr) , T=0,1,...,n,

n

Uz'xr :-X ()Y, ,cr=0,1, ...,0.

T, ¢
=0 nj ar nj’ nj
In other terms, if the investigator chooses to consider a specifica-
tion of prior mean and precisions that has R0 as the ordinary
least squares estimator of Rn as a linear function of
¢no’ ¢nl’ ey ¢nk , and has prior precisions L Tnl- rn,‘-o .
then ﬁn 1s precisely what it would be if he took R ® 0 (in which

]

case Unr would bec@ Unr) .

The functions ¢n r described above depend--in a simple way--on
n. It is more convenient when considering specification of preci-

sions to use functions independent of n: ¢:1 ] (n/Z);i ¢nr s SO

that




\l

' 14

" 'y *
7 o = V172, ¢ (x) := cos mrx, r >0, (5.2)

.’ o
’ We set
e |
.:' * em ;i -
::: Bnr . (Z/n) Bnr ’ ) o 0, l’ coe o n. ’
‘.9 ‘
, Then--n being fixed-~we are assuming that Rn has an expansion |
‘h) “
2 R =R (0 +] 8 ¢* 0,1 |
(x o (X Zr-osnr¢tx.xe{,]-

- While formally the assumed expansion of Rn depends on n,

Y

.h: we consider that terms of large index are negligible; and each
2

L term is in fact independent of n, so that we write

" o x *

X1 Rx) =R (x) +] B ¢ (x), xce[0,1]. (5.3)

. 4

-,‘4' =0

)

Vq * .

: The coefficients {Br s, r=0,1,...,a} , modeled as random vari-

- ables, have means

N *

and precisions

'~ * *
{ T = 1/Var(§r) .

\ In the present context and notation, Equation (2.12) becomes

N % * *

N Bnt = Ur /(n/2 + wzrrlﬁ) , (5.4)

" where

v n

v * *

:'\; u_ = Ej . LN (3/) [Ynj‘Ro(J/n)] R

»

» r=0,1,...,n. (5.5)

Y

.l
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* * * *
We note that E(ZUr /nIB ) = Br » and that 2U,./n is the ordinary

*
least squares estimate of Br with weights =« al

For fixed x € [0,1] , the posterior linear expectation of R(x) is

i=0,1, ... ,n.

- n * *
R (x) = R (x) + Zr-o B ¢ (%) (5.6)

and its linear variance is

a

E[RG) - R (012 =] [65(0)]2/ Ga/n? + 1)) . (5.7)

r=0

In view of Theorem 4.1, when n 1is large we expect the posterior
distribution of R(x) to be approximately normal with mean Rn(x)

given by (5.6) and variance given by (5.7).

6. EXAMPLES

As a first example, we have used the example used by Wahba
(1980) :

3

X

X, =1 ek T & 0

y
k=1 K

where Y- 1.4256 , = -0,7344, Y3 " 0.1296 , and where the

Y2
random variables € » t= ..., =-2,-1,0,1,2,... are independent,
each having the standard normal distribution. The simulation was
carried out starting with X~3o = 0 and then discarding

x_3°. x_zg, ooy xo . (These observed x: are not to be confused

with xnj t= §/n 1in the formulas in Section 5.) One set of 256

points was obtained in this way (n=128), as also a larger set of

1024 (n=512) containing the first.
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The function Ro used is defiped by:

Ro(x) ;= 0,1 + 2.9 cos(mx) + 0,5 cos(2mx), 0 < x < 1.
The accompanying Tables 1 and 2, and Figures 1 through 14,

relate to the following four specifications of precisions
x

h Tr s, r=0,1,...,n:
|} * 8
A: T, = (0.21 ) ",
3 * r
, B: T, = (0.00024) (6.4)  ,
*
5 C: T := 0.004(4)" ,
1 r
}A and
- *
‘ D: T :=0.1(3) .
r
N Table 1 indicates the "damping" effect of each specification of
» *
;' precisions; that is, the entry in the table is 1/(14—n21r/ 3n) ,
o the factor by which the ordinary least squares estimate , 2u:/rx,
~ %
o) is multiplied to obtain Br », Wwhen n = 128 (256 observations).
“l
b The entries in Table 2 are for n = 512 (1024 observations).
\

*
Each specification of {Tr » T=0,1,...,} leads to a "window

estimator" that could be considered from a conventional point of

Aoy
» a8

view. Any or all of these specifications might appear reasonable

LR

: to an investigator. The precisions specified under D increase

% most rapidly, and might be expected to lead to the smoothest esti-
N

N mates of R. 1Initially, the precisions A increase somewhat more
A

= rapidly than those of B, though eventually those of B increase

Xe much more rapidly. In fact, those of B were deliberately selected
N *
; (by regression of log T, on T, from A) so as to be near those
\

Ky

- of A for r(=10.

f

Ll

1
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Eats Table 1
,, Multipliers for n = 128
oy
‘;f‘
WO
1) .1\
ANy r A B C D
- 0 1.000 1.000 1.000 0.997
o 1 1.000 1.000 1.000 0.992
-l 2 1.000 1.000 0.998 0.977
32 3 0.999 1.000 0.993 0.935
3 4 0.994 0.999 0.974 0.828
i ko ‘ 5 00963 00993 0.905 00616
N 6 0.860 0.959 0.704 0.348
! 7 0.641 0.787 0.373 0.151
O 8 0.380 0.365 0.129 0.056
o] 9 0.193 0.083 0.036 0.019
2 10 0.093 0.014 0.009 0.007
o 11 0.046 0.002 0.002 0.002
) 12 0.023 0.000 0.001 0.001
R 13 0.012 0.000  0.000 0.000
W 14 0.007 0.000 0.000 0.000
T 15 0.004 0.000 0.000 0.000
»}* 16 0.002 0.000 0.000 0.000
N 17 0.001 0.000 0.000 0.000
NN 18 0.001 0.000 0.000 0.000
s 19 0.001 0.000 0.000 0.000
K 20 0.000 0.000 0.000 0.000
-'....
-'\.;
25
30
-
5
-,
ne
-
LR}
. Q-:.q
LA}
"
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\'
'\
Ny
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Table 2

Multipliers for n = 512

4 A B C D

0 1.000 1.000 1.000 0.999
1 1.000 1.000 1.000 0.998
2 1.000 1.000 1.000 0.994
3 1.000 1.000 0.998 0.983
4 0.998 1.000 0.993 0.951
5 0.991 0.998 0.974 0.865
6 0.961 0.990 0.905 0.681
7 0.877 0.936 0.704 0.416
8 0.710 0.697 0.373 0.192
9 0.489 0.265 0.129 0.073
10 0.292 0.053 . 0.036 0.026
11 "0.161 0.009 0.009 0.009
12 0.087 0.001 0.002 0.003
13 0.048 0.000 0.001 0.001
14 0.027

15 0.016

16 0.009

17 0.006

18 0.004

19 0.002

20 0.002

Cs
N
g
h..
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Figure 1 shows both the true R(x) := log f(x/2) and the
estimate i obtained from the 256 observations (n = 128) using
precigions A. Figures 2, 3, and 4 show estimates obtained through
precigions B, C, and D respectively. Figure 5 shows first and
fourth estimates, together with the true R. Figure 6 provides the
graphs for the first prior, but based on the 1024 observations
(n = 512), and Figure 7 is for the fourth prior. Figure 8 shows
first and fourth together.

Figure 9 shows the spectral density estimate and the true
spectral density, graphed against twice the frequency, for the
first prior (A), and 256 observations. The curves lying above and
below the graph of the estimate indicate the precision of the
estimate in the following way. For fixed x, the asymptotic
theory leads us to expect i (x) to be approxiQately normally
distributed according to its posterior distribution. Its (approxi-
mate) posterior variance is given by (5.7). Letting 0o(x) denote
the square root of this posterior variance, the upper and lower
graphs are graphs of exp[i(x) + 0 (x)]. Figure 10 gives the
same information for the fourth prior (D), and Figure 11 shows
first and fourth estimates together., Figures 12 and 13 compare
with Figures 9 and 10, but for the case of 1024 observations.
Spectral density estimates for first and fourth priors are shown
together in Figure 14, for the case of 1024 observationms.

For a second example we have used underwater ambient noise
data kindly furnished by the Naval Undersea Warfare Experiment

Station at Keyport, Washington. A sample of 1024 observations

VYRR

.
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(n = 512) was taken, with effective sampling frequency 80 khz. The
procedure described in Section 5 was followed, and precisions

T: 1= 0.1(3*), r=0,1,..., 512 were used. Figure 15 shows the
estimated log spectral density, together with graphs obtéined by
adding and by subtracting the square root of the expected squared
error; i.e., (approximately) one standard deviation of the (approxi-
mately) normal posterior distribution of the estimate for fixed
frequency. Figure 16 shows the corresponding graphs for the
spectral density; each ordinate in Figure 15 is just the natural

logarithm of the corresponding ordinate in Figure 16.
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APPENDIX
Proof of Theorem 4.1.
Set
24y " [Ynj - Rn(‘nj)] ;
then E(znj) =0, Var(zﬂ) =1, for § =0,1,...,n; and

zno 2 ven Znn are independent. From (2.7) we have

U _=7 LA C /An"nj) +R (%

§=0 no nj”nr(xnj) [an )= R0 (x

3 nj

and from (2.1) and (2.4) we have

n
Uy = QA Zj-O 7 1F00 ®ag) bar Fag) Zag ¥ Bopr T 0seesms

Then from (2.10), (2.11), and (4.1),

v = zj-o "nj¢nr(xnj) rno(xnj)znj R r=0,1, o, n .

Let fnj be the characteristic function of znj :

fnj(t) H E[exp(itznj)] y J=0,1,...,n.

Let kn be an increasing sequence of integers satisfying the

hypotheses of Theorem 4.1, and let {‘nj’ 3=0,1,..0 k

n=0,1,... } be an array of real pumbers such that an aij =1,
j=0

Since Z ,...,2Z are independent, it follows from
no an k

(A2) that the characteristic function of ) oav R
rmg 0OF BT

*
£ (t) t= Elexp(it Zr_o a V.0l

(A1)

)1,

(A2)

(A3)

(A4)
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is given by
N n kn
£ (0) = nj . fnj([/—wnj rno(xnj) ) anr¢nr(xnj)]t) .
- r=0
For fixed t, set
ty [/_wnj TooZay? zr (x_ )1t ;

0 am:¢nr nj

=
then
n

*
£ (e) =111
n j-O

fnj(t: ).

nj

Since E(Z ,) = 0 and Var(Z

nj nj)'l,j-o,l,...,n,

£4(8) = 1- t2/2 + (anj/6)|t|3 Elznj|3 ,

where Ianj,l (=1, and

fnj (tnj) =1+ enj ’

where

cm = p2 3 3
Opg :nj/2+ (anj/6)|txd| z|znj| .

Since Ianrlh- 1, r=0,1,...,k , by Hypothesis (4.3), we have
max{|t

:31=01,...,0}—> 0 as n —> =,

n;]l

for fixed t ¢ R. And according to (4.2), E[an|3 (=M for all
jJ and n, so that

m{lenj| tj=0,1,...,0})=> 0 as n = » ,

(AS)

(46)

(A7)

(a8)

(a9)

(A10)




et Ak, s,
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>

A
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From (2.4) and (AS),

n n kn
- 2
Zj.o tﬁj t2 Zj_ o Maj oo (xnj) zr-o am:'bur(xn;j) ZS.O ans¢ns(xnj)
- t2 2
: Z1:-0 “ar*
so that
n :
) . 1:12‘j =t2, (A11)
j-
Then
.n ) n 3
Lo ol (2724 QU ] eyl

(=t2/2 + (Mt2/6)max{lcnjl :4=0,1,...,n} ,

so that by (A9), for fixed ¢,

) . Ieﬂl 1s bounded. (A12)
j-

Again, from (A8) and (All),
n

IZ enj+c2/2 (= (Mt2/6) mk{ltnjl :3=0,1,...,n0| ,
3=0

so that by (A9)

a
2 enj ~> «t?/2 as n ~-->® ,
i=0




It follows from (A6), (A7), (A10), (A12), and (A13) that

N n n R
£ (t) Hj-O fnj(tnj) - Hj-o 1+ an) -~> exp(~t</2)

as n —> « (Chung, 1968, page 184), for each real t. So

kn
Z ar Vn r converges in law to the standard normal distribution,
r=0

and the array ¥ 1is jointly asymptotically normal. §
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